Update on Genomes of Nodule Bacteria Genomes of the Symbiotic Nitrogen-Fixing Bacteria of Legumes
نویسندگان
چکیده
Over the last several decades, there have been a large number of studies done on the genetics, biochemistry, physiology, ecology, and agronomics of the bacteria forming nitrogen-fixing symbioses with legumes. These bacteria, collectively referred to as the rhizobia, are taxonomically and physiologically diverse members of the a and b subclasses of the Proteobacteria, and mostly comprise members of the genera Rhizobium, Bradyrhizobium,Mesorhizobium,Sinorhizobium, and Azorhizobium (Fig. 1). Most studies have focused on mutational and biochemical analyses to define bacterial genes involved in root-nodule formation, symbiotic specificity, nitrogen fixation, and plant-microbe signal exchange. More recently, however, several genomic approaches have been used to define and understand the involvement of whole bacterial genomes in the symbiotic process. Genomic analyses of the model symbiotic bacterial species Sinorhizobium meliloti, Rhizobium leguminosarum, and Bradyrhizobium japonicum have revealed a few surprises concerning genome evolution and structure, how plant and microbes communicate, and physiological diversity among the microsymbionts of legumes. In this review we discuss what is currently known about the genomes of several rhizobia and how genome-enabled studies have provided insights into the symbiotic interaction of the rhizobia and their respective host legumes.
منابع مشابه
Genomes of the symbiotic nitrogen-fixing bacteria of legumes.
Over the last several decades, there have been a large number of studies done on the genetics, biochemistry, physiology, ecology, and agronomics of the bacteria forming nitrogen-fixing symbioses with legumes. These bacteria, collectively referred to as the rhizobia, are taxonomically and physiologically diverse members of the a and b subclasses of the Proteobacteria, and mostly comprise members...
متن کاملA Genomic Encyclopedia of the Root Nodule Bacteria: assessing genetic diversity through a systematic biogeographic survey
Root nodule bacteria are free-living soil bacteria, belonging to diverse genera within the Alphaproteobacteria and Betaproteobacteria, that have the capacity to form nitrogen-fixing symbioses with legumes. The symbiosis is specific and is governed by signaling molecules produced from both host and bacteria. Sequencing of several model RNB genomes has provided valuable insights into the genetic ...
متن کاملDiscovery of Novel Plant Interaction Determinants from the Genomes of 163 Root Nodule Bacteria
Root nodule bacteria (RNB) or "rhizobia" are a type of plant growth promoting bacteria, typified by their ability to fix nitrogen for their plant host, fixing nearly 65% of the nitrogen currently utilized in sustainable agricultural production of legume crops and pastures. In this study, we sequenced the genomes of 110 RNB from diverse hosts and biogeographical regions, and undertook a global e...
متن کاملCompatibility between Legumes and Rhizobia for the Establishment of a Successful Nitrogen-Fixing Symbiosis
The root nodule symbiosis established between legumes and rhizobia is an exquisite biological interaction responsible for fixing a significant amount of nitrogen in terrestrial ecosystems. The success of this interaction depends on the recognition of the right partner by the plant within the richest microbial ecosystems on Earth, the soil. Recent metagenomic studies of the soil biome have revea...
متن کاملTwo microRNAs linked to nodule infection and nitrogen-fixing ability in the legume Lotus japonicus.
Legumes overcome nitrogen shortage by developing root nodules in which symbiotic bacteria fix atmospheric nitrogen in exchange for host-derived carbohydrates and mineral nutrients. Nodule development involves the distinct processes of nodule organogenesis, bacterial infection, and the onset of nitrogen fixation. These entail profound, dynamic gene expression changes, notably contributed to by m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007